Molecular generation targeting desired electronic properties via deep generative models
نویسندگان
چکیده
منابع مشابه
Bayesian Renewables Scenario Generation via Deep Generative Networks
We present a method to generate renewable scenarios using Bayesian probabilities by implementing the Bayesian generative adversarial network (Bayesian GAN), which is a variant of generative adversarial networks based on two interconnected deep neural networks. By using a Bayesian formulation, generators can be constructed and trained to produce scenarios that capture different salient modes in ...
متن کاملLearning Deep Generative Models
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...
متن کاملAuxiliary Deep Generative Models
Deep generative models parameterized by neural networks have recently achieved state-ofthe-art performance in unsupervised and semisupervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the generative model unchanged but make the variational distribution more expressive. Inspired by the structure...
متن کاملLearning Deep Generative Models
Learning Deep Generative Models Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many AI related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architec...
متن کاملZero-Shot Learning via Class-Conditioned Deep Generative Models
We present a deep generative model for Zero-Shot Learning (ZSL). Unlike most existing methods for this problem, that represent each class as a point (via a semantic embedding), we represent each seen/unseen class using a classspecific latent-space distribution, conditioned on class attributes. We use these latent-space distributions as a prior for a supervised variational autoencoder (VAE), whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale
سال: 2020
ISSN: 2040-3364,2040-3372
DOI: 10.1039/c9nr10687a